油压机,油压机厂家

全国产品销售热线

15588247377

产品分类

您的当前位置:行业新闻>>含生长激素纳米药物微球及其制备方法

含生长激素纳米药物微球及其制备方法

发布时间:2025-04-27

专利名称:含生长激素纳米药物微球及其制备方法
技术领域
本发明涉及纳米药物微球,具体地说,是含生长激素纳米药物微球及其制备方法,属于制药技术领域。
背景技术
生长激素(Growth Hormone)是动物腺垂体细胞分泌的蛋白质,是一种肽类激素, 具有细胞黏附作用和促进生长或延缓衰老作用。由于生长激素经口服后在胃肠道中活性会被破坏,不能发挥作用,所以只能采用注射或埋植方式。目前生长激素制剂有缓冲剂和缓释剂两种形式,缓冲剂是用碳酸氢盐缓冲液溶解生长激素冻干粉,现配现用,需每天注射;缓释剂是采用包埋、吸附、融合等措施将大量生长激素固定在一定的载体空间内,使其具有长效缓释作用。中国专利文献CN200910019437. 9,
公开日2010年4月7日,公开了一种载生长
激素海藻酸钙壳聚糖缓释微球及其应用,采用包埋的方法将生长激素束缚于海藻酸钙微球内,再利用壳聚糖溶液在微球表面形成均匀半透性薄膜,得到复合凝胶微球,生长激素包封率在70% - 96%,微球粒径在130 μ m — 260 μ m,微球表面的壳聚糖具有生理活性,能被降解吸收。采用生物可降解的乳酸-羟基乙酸共聚物包被生长激素,具有缓慢释放活性物质、延长药物的生物半衰期、增加生物利用度等优势。陆丽芳等采用复乳-溶媒蒸发法用乳酸-羟基乙酸共聚物将生长激素制成长效注射微球,所得微球平均粒径约为30 μ m,生长激素包封率高达95%以上,释药时间长达30天(详见陆丽芳,可生物降解生长激素缓释微球的研究,复旦大学2004年硕士论文)。用常规的S/0、S/0/W和S/0/0方法制备的药物微球,由于表面疏水,容易导致体内组织微囊化及炎症等副作用,且药物突释易造成药物本身的毒副作用。关于纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)微球及其制备方法,目前还未见报道。

发明内容
本发明的目的是针对现有技术中的不足,提供一种纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)微球,以解决现有技术中生长激素制剂包封率不高,不完全释放和突释情况,疏水性表面会引起局部微囊化及炎症的缺点。本发明的再一的目的是,提供一种纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)微球的制备方法。为实现上述目的,本发明采取的技术方案是
一种含生长激素纳米药物微球,所述微球的表面自组装有一层纳米颗粒,微球中生长激素的重量百分比为O. 01% - 40%,纳米颗粒的重量百分比为O. 01% - 96%,聚合物的重量百分比为3. 65% - 99. 98%,药用辅料的重量百分比为0% — 30%,微球的粒径为I 一 500 Mm。所述的纳米颗粒为有机纳米颗粒或无机纳米颗粒,可选自聚苯乙烯纳米颗粒、交联葡聚糖纳米颗粒、二氧化娃纳米颗粒、二氧化钛纳米颗粒、轻基磷灰石纳米颗粒、四氧化三铁纳米颗粒、三氧化二铁颗粒、金纳米颗粒、三氧化二招纳米颗粒、碳酸韩纳米颗粒、磷酸钙纳米颗粒、碳酸镁纳米颗粒、氢氧化镁纳米颗粒或银纳米颗粒中的一种或几种。所述的聚合物选自聚己内酯、聚乳酸、聚乳酸一羟基乙酸、聚乳酸一聚乙二醇、聚羟基乙酸一聚乳酸一聚乙二醇或聚己内酯一聚乙二醇中的一种或几种。所述的药用辅料为注射用药用辅料。所述微球的粒径为10 - 100 Mm。一种含生长激素纳米药物微球的制备方法, 包括以下步骤
(1)将生长激素和药用辅料制备成纳米药物,所述纳米药物中,生长激素的重量百分比为O. 1% - 90%,药用辅料的重量百分比为0% - 20 % ;
(2)将步骤(I)制备的纳米药物按照1:1一 1:10的重量比分散在重量百分比浓度为O. 5% - 80%聚合物的有机溶剂混合溶液中,形成均匀的混悬液,即油包纳米药物混悬液;
(3)将步骤(2)形成的油包纳米药物混悬液加入到含重量百分比为1%— 80%纳米颗粒的水混悬液或含重量百分比为1% - 80%纳米颗粒和重量百分比为O. 5% - 5%表面活性剂的水混悬液中,进行乳化,形成纳米颗粒混悬液包油一油包纳米药物复乳;
(4)将所述纳米颗粒混悬液包油一油包纳米药物复乳转移到含重量百分比为1%— 10%无机盐的水溶液中固化I一 4小时;
(5)将步骤(4)所得样品进行离心,收集微球,并洗涤所得微球,之后冻干,得到表面自组装有纳米颗粒且内部含有生长激素纳米药物的微球。步骤(I)中所述的纳米药物的制备包括以下步骤
将生长激素和药用辅料溶解在水中,然后加入多孔纳米颗粒,搅拌使得生长激素和药用辅料充分吸附在多孔纳米颗粒里,离心去除上清液,再充分洗涤,然后冻干形成纳米药物;或
将生长激素和药用辅料溶解在水中形成药物水溶液,然后将药物水溶液转移到聚乙二醇水溶液中,充分混匀后于冰箱中预冻,之后冻干,再用二氯甲烷溶解聚乙二醇并离心除去聚乙二醇得到纳米药物。步骤(2)中所述的有机溶剂混合溶液中还添加有重量百分比为O. 1% - 20%的聚乙二醇或泊洛沙姆。步骤(2)中所述的聚合物重量百分比浓度为5% - 30%,所述的有机溶剂选自二氯甲烷、乙酸乙酯、乙腈、庚烷、氯仿或丙酮中的一种或几种。步骤(3)中所述的纳米颗粒重量百分比浓度为20% — 70%,所述的表面活性剂选自聚乙烯醇、聚乙二醇、聚乙烯吡咯烷酮、泊洛沙姆、聚山梨醇、乙基纤维素或吐温中的一种或几种。本发明的有益效果在于
I、本发明选择了合适的聚合物材料和制备微球的方法,制备的微球包封率高达80%以上,并且这种表面自组装有一层纳米颗粒的微球具有增强细胞黏附的作用,以及减少局部过酸和疏水材料引起的炎症及微囊化的作用。2、采用本发明方法制备的微球,其粒径大小可以根据不同需要从I μ m到500 μπι进行调控,且制备过程不污染环境。
3、本发明方法制备的微球,大大降低了药物突释,药物几乎完全释放,可以达到零级释放,释放的纳米药物可以局部高效被病变细胞摄取,从而减少药物本身的毒副作用,同时可以使药物在整个制备过程和治疗过程中保持高活性即不失活。4、采用本发明方法制成的微球制剂,其微粒表面光滑圆整,颗粒规整无粘连,其冻干粉剂为白色细腻、疏松的粉体,不会塌陷、不粘连,再分散性良好,可以运用到其它药物缓释或控释微球的制备中。


附图I是本发明实施例I制备所得微球的扫描电镜(SEM)照片。附图2是本发明实施例I制备所得微球的体外释放曲线。附图3是本发明实施例I制备所得微球的药效作用曲线。 附图4是本发明实施例I制备所得微球与用S/0/W方法制备微球的体内组织相容性情况。
具体实施例方式下面结合具体实施例并参照附图对本发明作详细说明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。需要说明的是,本发明技术方案中,所述的纳米颗粒为有机纳米颗粒或无机纳米颗粒,具体指选自聚苯乙烯纳米颗粒、交联葡聚糖纳米颗粒、二氧化娃纳米颗粒、二氧化钛纳米颗粒、轻基磷灰石纳米颗粒、四氧化三铁纳米颗粒、三氧化二铁颗粒、金纳米颗粒、三氧化二铝纳米颗粒、碳酸钙纳米颗粒、磷酸钙纳米颗粒、碳酸镁纳米颗粒、氢氧化镁纳米颗粒或银纳米颗粒等中的一种或多种。所述的聚合物选自聚己内酯(PCL)、聚乳酸(PLA)、聚乳酸一羟基乙酸(PLGA)、聚乳酸一聚乙二醇(PLA - PEG)、聚羟基乙酸一聚乳酸一聚乙二醇(PLGA — PEG)或聚己内酯一聚乙二醇(PCL - PEG)中的一种或几种。所述的药用辅料为注射用药用辅料,可以是小糖类(如蔗糖、海藻糖、葡萄糖、麦芽糖或乳糖等)、多羟基类化合物(如甘露醇、山梨醇、甘油、1,2 —丙二醇、赤鲜糖醇、聚乙二醇、聚乙烯醇、聚环氧乙烷或聚吡咯烷酮等)、多糖类化合物(如葡聚糖、海藻酸钠、壳聚糖、淀粉、纤维素或环糊精等)、氨基酸化合物(如甘氨酸、赖氨酸、精氨酸、谷氨酸或组氨酸等)或无机盐类物质(如锌盐、钙盐、铜盐、镁盐或钥盐等)中的一种或任意组合。制备微球的步骤(2)中,所述的聚合物有机溶剂混合溶液中还添加有重量百分比为O. 1% - 20%的聚乙二醇(PEG)或泊洛沙姆(Poloxamer)。所述的有机溶剂选自二氯甲烷、乙酸乙酯、乙腈、庚烷、氯仿或丙酮中的一种或几种,其中以二氯甲烷、乙酸乙酯或乙腈中的一种或几种有机溶剂为佳。制备微球的步骤(3)中,所述的表面活性剂选自聚乙烯醇(PVA)、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、泊洛沙姆(Poloxamer)、聚山梨醇、乙基纤维素(EC)或吐温中的一种或几种。制备微球的步骤(2)中,所述的分散方式可选择乳化、涡旋或超声等,分散时间优选为I 一 5分钟。制备微球的步骤(3)中,所述的加入方式可选择滴加、一次性加入、喷雾方式加入或倒入等;所述的乳化方式可选择乳化、涡旋或超声等,乳化时间为O. I — 5分钟。制备微球的步骤(4)中,所述的无机盐可选自氯化钠、氯化钾、硝酸钾或碳酸钠等;所述的转移方式可为滴加、一次性加入、喷雾方式加入或倒入等。制备微球的步骤(5)中,洗涤时可采用水、乙醇或乙醇一水混合液洗涤3 — 5次。实施例I
载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的制备,包括如下步骤
(1)取10mg生长激素和10 mg葡聚糖溶解到O. 4 ml的水中形成药物水溶液, 然后把上述溶液转移到3. 2 ml浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为30%(w/w)的PLGA的乙腈溶液按照重量比为1:8混合,并超声I分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到40ml浓度为20% (w/w)的轻基磷灰石纳米颗粒水混悬液中并超声O. I分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到浓度为10% (w/w)的氯化钠水溶液中固化4小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用乙醇洗涤5次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球。本实施例中所制得微球中,药物的重量百分比为O. 17%,纳米颗粒的重量百分比为84. 45%,聚合物的重量百分比为15. 17%,药用辅料的重量百分比为O. 21%。对本实施例制备的载有生长激素的聚乳酸一羟基乙酸(PLGA )微球进行形貌表征、释放曲线测试、药效测试及在体内组织相容性测试,并将其药效及组织相容性与用s/0/w方法(详见李志平,李云富,张振亚,刘燕,曲燕燕,梅兴国,干扰素A-2b缓释微球的制备及影响因素考察,军事医学科学院院刊,2007,31 (5) :451-455)制备的微球进行对比,其中药效测试条件为一次给药,总剂量与对照组水溶液组每天一次的共15天的总剂量相同。图I是本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的扫描电镜(SEM)照片,其中,A为微球的扫描电镜图,B为微球的表面放大图,从图中可以看出,所制备的微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在10 — 120 μπι。图2是本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的体外释放曲线,从图中可以看出,所制备的微球几乎达到100%的药物释放率,突释非常小,几乎完全释放,基本可以达到零级释放(各条曲线代表不同PLGA材料制备的微球,可以调控药物的不同释放时间,其中各个PLGA分别为2Α50/50:羟基乙酸-乳酸=1:1和分子量为20000_30000Da、2A65/35:羟基乙酸-乳酸=0. 65:0. 35和分子量为20000-30000Da、3A50/50:羟基乙酸-乳酸=1:1和分子量为30000-47000Da、3A65/35:羟基乙酸-乳酸=0. 65:0. 35和分子量为30000-47000Da),其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为92. 0% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。图3是本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的药效作用曲线,微球组为本实施例方法制备的微球,对照组为用S/0/W方法制备的微球,空白组为不含药物的微球,可以看出,使用本实施例所制备的微球,体重增加比对照组的体重增加快,药效更好。图4是本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的组织相容性情况,从图中可以看出,所制备的微球(Ν/0/Ν组)的相容性比对照组的好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。以本实施例方法制备的微球包封率高,最少可以达到80%,突释非常小,几乎完全释放,基本可以达到零级释放,同时由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使生物大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。而且这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。本实施例方法制备的生物大分子药物微球可以用于需要频繁注射给药、长期治疗 的疾病,尤其是需要局部治疗的疾病如肿瘤、各种病因引起的贫血、侏儒等重大疾病的治疗。实施例2
载有生长激素纳米药物的聚己内酯(PCL)微球的制备,包括如下步骤
(1)取20mg生长激素溶解到O. 5 ml的水中,然后和多孔二氧化钛纳米颗粒20 mg搅拌24小时,使得生长激素充分吸附在多孔的二氧化钛纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为O.5% (w/w)的PCL的乙酸乙酯溶液按照重量比1:10混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到50ml含10% (w/w)银纳米颗粒和1% (w/w)聚乙烯醇(PVA)表面活性剂的水混悬液中,搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为1% (w/w)的氯化钾水溶液中固化3小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚己内酯(PCL)微球。本实施例所得的微球中,药物的重量百分比为O. 47%,纳米颗粒的重量百分比为83%,聚合物的重量百分比为16. 53%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚己内酯(PCL)微球形态好,其表面自组装有一层银纳米颗粒,粒径在10 - 100 μ m0微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为93. 5% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。
实施例3
载有生长激素纳米药物的聚乳酸(PLA)微球的制备,包括如下步骤
(1)取20mg生长激素溶解到O. 5 ml的水中,然后和多孔二氧化硅纳米颗粒20 mg搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%(w/w)的PLA的二氯甲烷溶液按照重量比1:9混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到50ml浓度为10% Cw/w)的银纳米颗粒水混悬液中,搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳; (4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸(PLA)微球。本实施例所制得的微球中,药物的重量百分比为O. 35%,纳米颗粒的重量百分比为96%,聚合物的重量百分比为3. 65%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚乳酸(PLA)微球形态好,其表面自组装有一层银纳米颗粒,粒径在I 一 130 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为92. 9% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。实施例4
载有生长激素纳米药物的聚乳酸一聚乙二醇(PLA - PEG)微球的制备,包括如下步骤
(1)取10mg生长激素和10 mg纤维素溶解到O. 4 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为5%(w/w)的PLA - PEG的二氯甲烷溶液按照重量比为1:5混合,并超声I分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到40ml含有20% (w/w)羟基磷灰石纳米颗粒和O. 5% (w/w)聚乙二醇(PEG)表面活性剂的水混悬液中并超声O. I分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到浓度为5% (w/w)的氯化钠水溶液中固化I小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用乙醇水溶液洗涤5次,冻干后得到载有生长激素纳米药物的聚乳酸一聚乙二醇(PLA - PEG)微球。本实施例中所制得微球中,药物的重量百分比为O. 17%,纳米颗粒的重量百分比为74. 15%,聚合物的重量百分比为25. 47%,药用辅料的重量百分比为O. 21%。本实施例中载有生长激素纳米药物的聚乳酸一聚乙二醇(PLA - PEG)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在2 — 280 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为94. 7%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局 部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例5
载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球的制备,包括如下步骤
(1)将5mg生长激素和5 mg甘氨酸溶解到O. 2 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml的浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为80%(w/w)的PLGA — PEG的乙腈溶液按照重量比为1:1混合并超声I分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到4ml浓度为20% (w/w)的二氧化钛纳米颗粒水混悬液中并超声2分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为10% (w/w)的氯化钠水溶液中固化4小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤4次,冻干后得到载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球。本实施例中所得微球中,药物的重量百分比为O. 51%,纳米颗粒的重量百分比为89. 89%,聚合物的重量百分比为9. 04%,药用辅料的重量百分比为O. 56%。本实施例中载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA -PEG)微球形态好,其表面自组装有一层二氧化钛纳米颗粒,粒径在I 一 300 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为96.0%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与二氧化钛纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例6
载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球的制备,包括如下步

(1)将5mg生长激素和5 mg甘油溶解到O. 2 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml的浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为10%(w/w)的PCL - PEG的庚烷溶液按照重量 比为1:8混合并超声I分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,庚烷溶液中还含有O. 1% (w/w)的泊洛沙姆;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到4ml含50% (w/w) 二氧化钛纳米颗粒和5% (w/w)聚乙烯吡咯烷酮表面活性剂的水混悬液中并超声2分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳; (4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为8% (w/w)的氯化钠水溶液中固化4小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用乙醇洗涤4次,冻干后得到载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球。本实施例中所得微球中,药物的重量百分比为O. 51%,纳米颗粒的重量百分比为
49.89%,聚合物的重量百分比为49.04 %,药用辅料的重量百分比为O. 56%。本实施例中载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球形态好,其表面自组装有一层二氧化钛纳米颗粒,粒径在I 一 370 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为95. 8%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与二氧化钛纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例7
载有生长激素纳米药物的聚己内酯(PCL)和聚乳酸(PLA)微球的制备,包括如下步骤
(1)将5mg生长激素和5 mg葡聚糖溶解到O. 2 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml的浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为10%(w/w)的PCL和10% (w/w) PLA的氯仿溶液按照重量比为1:9混合并超声I分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到5ml浓度为20% (w/w)的羟基磷灰石纳米颗粒水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为1% (w/w)的氯化钠水溶液中固化I小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚己内酯(PCL)和聚乳酸(PLA)微球。本实施例中所得微球中,药物的重量百分比为O. 30%,纳米颗粒的重量百分比为71. 79%,聚合物的重量百分比为27. 55%,药用辅料的重量百分比为O. 36%。
本实施例中载有生长激素纳米药物的聚己内酯(PCL)和聚乳酸(PLA)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在I 一 500 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为93. 2%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例8
载有生长激素纳米药物的聚己内酯(PCL)和聚羟基乙酸一聚乳酸一聚乙二醇(PLGA —PEG)微球的制备,包括如下步骤
(1)将5mg生长激素和5 mg山梨醇溶解到O. 2 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml的浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%(w/w)的PCL和60% (w/w)的PLGA — PEG的丙酮溶液按照重量比为1:2混合并超声2分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到5ml含有40% (w/w)羟基磷灰石纳米颗粒和5% (w/w)泊洛沙姆表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为1% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚己内酯(PCL)和聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球。本实施例中所得微球中,药物的重量百分比为O. 36%,纳米颗粒的重量百分比为41. 79%,聚合物的重量百分比为57. 49%,药用辅料的重量百分比为O. 36%。
本实施例中载有生长激素纳米药物的聚己内酯(PCL)和聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在10 —100 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为89. 8%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例9
载有生长激素纳米药物的聚己内酯(PCL)微球的制备,包括如下步骤 (1)将5mg生长激素和5 mg葡聚糖溶解到O. 2 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml的浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%(w/w)的PCL的乙腈溶液按照重量比为1:9混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,乙腈溶液中还含有20% (w/w)的聚乙二醇;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到Iml浓度为70% Cw/w)的羟基磷灰石纳米颗粒水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用乙醇洗涤3次,冻干后得到载有生长激素纳米药物的聚己内酯(PCL)微球。本实施例中所得微球中,药物的重量百分比为O. 70%,纳米颗粒的重量百分比为44. 03%,聚合物的重量百分比为54. 72%,药用辅料的重量百分比为O. 55%。本实施例中载有生长激素纳米药物的聚己内酯(PCL)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在I 一 450 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为91. 8%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例10载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的制备,包括如下步骤
(1)将5mg生长激素和5 mg葡聚糖溶解到O. 2 ml的水中形成药物水溶液,然后把上述溶液转移到3. 2 ml的浓度为5% (w/w)的聚乙二醇(PEG8000)水溶液中,充分混匀,然后在一 80°C冰箱预冻12小时,再用冻干机冻干,然后用二氯甲烷溶解PEG并离心除去PEG得到生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%(w/w)的PLGA的二氯甲烷-乙酸乙酯(1:1,v/v)溶液按照重量比为1:9混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,二氯甲烷-乙酸乙酯溶液中还含有O. 1% (w/w)的聚乙二醇;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到Iml含有20% (w/w)羟基磷灰石纳米颗粒和2% (w/w)聚山梨醇表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳; (4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球。本实施例中所得微球中,药物的重量百分比为I. 70%,纳米颗粒的重量百分比为
43.03%,聚合物的重量百分比为54. 12%,药用辅料的重量百分比为I. 15%。本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在5 — 410 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为89. 9% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例11
载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球的制备,包括如下步骤
(1)取20mg生长激素溶解到O. 5 ml的水中,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%(w/w)的PLGA — PEG的二氯甲烷溶液按照重量比1:9混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到50ml浓度为10% (w/w)的银纳米颗粒水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球。本实施例中所得微球中,药物的重量百分比为O. 35%,纳米颗粒的重量百分比为96%,聚合物的重量百分比为3. 65%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA -PEG)微球形态好,其表面自组装有一层银纳米颗粒,粒径在I 一 500 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为92. 9% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大 分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。实施例12
载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球的制备,包括如下步骤
(1)取45mg生长激素溶解到O. 5 ml的水中形成药物水溶液,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%的PLGA- PEG的二氯甲烷溶液按照重量比1:10混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,二氯甲烷溶液中还含有20% (w/w)的泊洛沙姆;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到50ml含浓度为10%(w/w)银纳米颗粒和5% (w/w)乙基纤维素表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA - PEG)微球。本实施例中所得微球中,药物的重量百分比为14.5%,纳米颗粒的重量百分比为
60.18%,聚合物的重量百分比为25. 32%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚羟基乙酸一聚乳酸一聚乙二醇(PLGA -PEG)微球形态好,其表面自组装有一层银纳米颗粒,粒径在I 一 450 μπι。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为92. 6% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。
实施例13
载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球的制备,包括如下步

(1)取20mg生长激素溶解到O. 5 ml的水中,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为30%(w/w)的PCL - PEG的二氯甲烷溶液按照重量比为1:9混合并超声I. 5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液; (3)把步骤(2)的油包生长激素纳米药物(N/0)混悬液滴加到Iml浓度为60% (w/w)轻基磷灰石纳米颗粒和1% (w/w)吐温表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钾水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤5次,冻干后得到载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球。本实施例中所得微球中,药物的重量百分比为I. 29%,纳米颗粒的重量百分比为51. 72%,聚合物的重量百分比为46. 99%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在10 - 290 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为94. 1%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用生。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例14
载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球的制备,包括如下步

(1)将5mg生长激素和10 mg葡聚糖溶解到O. 2 ml的水中形成药物水溶液,然后把多孔三氧化铝纳米颗粒20 mg加入上述溶液中搅拌24小时,使得生长激素及葡聚糖充分吸附在多孔的三氧化铝纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和含有浓度为15%(w/w)的PCL - PEG的二氯甲烷溶液按照重量比为I: I混合并超声I. 5分钟形成均匀混悬液,即油包生长激素纳米药物(N/0)混悬液,二氯甲烷溶液中还含有10% (w/w)的泊洛沙姆;
(3)把步骤(2)的油包生长激素纳米药物(N/0)混悬液滴加到Iml含有浓度为80% (w/W)交联葡聚糖纳米颗粒和O. 5% (w/w)聚乙烯醇(PVA)表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用乙醇洗涤5次,冻干后得到载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球。本实施例中所得微球中,药物的重量百分比为6. 15%,纳米颗粒的重量百分比为
61.54%,聚合物的重量百分比为7. 69%,药用辅料的重量百分比为24. 62%。本实施例中载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)微球形态好,其表面自组装有一层交联葡聚糖纳米颗粒,粒径在15 — 360 μ m。微球的药物体外释放 率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为91. 8%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。实施例15
载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)和聚乳酸(PLA)微球的制备,包括如下步骤
(1)取20mg生长激素溶解到O. 5 ml的水中,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为12.5% (w/w)的PLGA的二氯甲烷溶液按照重量比为1:4混合并搅拌2. 5分钟,形成均匀的混悬液,再把I. 6 ml浓度为12. 5% (w/w)的PLA的乙酸乙酯溶液加到上述混悬液中,再搅拌2分钟形成均匀混悬液,即油包生长激素纳米药物(N/0)混悬液;
(3)把步骤(2)的油包生长激素纳米药物(N/0)混悬液滴加到2ml含浓度为10% (w/w)羟基磷灰石纳米颗粒和2% (w/w)聚乙二醇表面活性剂的水混悬液中并超声O. 5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钾水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)和聚乳酸(PLA)微球。本实施例中所得微球中,药物的重量百分比为I. 58%,纳米颗粒的重量百分比为60. 20%,聚合物的重量百分比为38. 22%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚己内酯一聚乙二醇(PCL - PEG)和聚乳酸(PLA)微球形态好,其表面自组装有一层羟基磷灰石纳米颗粒,粒径在I 一 350 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为93. 8% (计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。由于纳米颗粒在材料降解产生的酸可以与羟基磷灰石纳米颗粒发生反应,从而中和酸,以保证微球的内环境相对稳定,可以使大分子药物在整个制备过程和治疗过程中保持高活性,即不失活。实施例16
载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的制备,包括如下步骤
(1)取O.5 mg生长激素溶解到O. 5 ml的水中形成药物水溶液,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为20%(w/w)的PLGA的二氯甲烷溶液按照重量比1:9混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,二氯甲烷溶液中还含有10% (w/w)的聚乙二醇;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到50ml含有10% (w/w)银纳米颗粒和2% (w/w)聚乙烯吡咯烷酮表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球。本实施例中所得微球中,药物的重量百分比为4. 17%,纳米颗粒的重量百分比为35. 71%,聚合物的重量百分比为60. 12%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球形态好,其表面自组装有一层银纳米颗粒,粒径在12 - 280 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为90. 9%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。实施例17
载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的制备,包括如下步骤
(1)取O.01 mg生长激素溶解到O. I ml的水中形成药物水溶液,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为10%(w/w)的PLGA的二氯甲烷溶液按照重量比1:10混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,二氯甲烷溶液中还含有1% (w/w)的聚乙二醇;(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到O.I ml浓度为1% (w/w)银纳米颗粒和2% (w/w)乙基纤维素表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用乙醇洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球。本实施例中所得微球中,药物的重量百分比为O. 01%,纳米颗粒的重量百分比为O. 01%,聚合物的重量百分比为99. 98%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球形态好,其表面自组装有一层银纳米颗粒,粒径在10 - 100 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生 长激素相对于其原始投加量的包封率为92. 7%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。实施例18
载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的制备,包括如下步骤
(1)取4mg生长激素溶解到O. 2 ml的水中形成药物水溶液,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化硅纳米颗粒里,离心去除上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为1%(w/w)的PLGA的乙腈溶液按照重量比1:1混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,乙腈溶液中还含有1% (w/w)的泊洛沙姆;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到O.Iml浓度为4% (w/w)银纳米颗粒和1% (w/w)聚乙烯醇(PVA)表面活性剂和1% (w/w)聚山梨醇表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球。本实施例中所得微球中,药物的重量百分比为40%,纳米颗粒的重量百分比为40%,聚合物的重量百分比为20%,药用辅料的重量百分比为0%。本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球形态好,其表面自组装有一层银纳米颗粒,粒径在12 - 495 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为94. 1%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。实施例19
载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球的制备,包括如下步骤
(1)取3mg生长激素和3 mg聚乙二醇溶解到0.2 ml的水中形成药物水溶液,然后和20 mg多孔二氧化硅纳米颗粒搅拌24小时,使得生长激素充分吸附在多孔的二氧化 硅纳米颗粒里,离心去上清液,再充分洗涤3次,然后冻干形成生长激素纳米药物;
(2)把上述生长激素纳米药物和浓度为5%(w/w)的PLGA的二氯甲烷溶液按照重量比1:3混合并超声5分钟形成均匀的混悬液,即油包生长激素纳米药物(N/0)混悬液,二氯甲烷溶液中还含有5% (w/w)的聚乙二醇;
(3)把步骤(2)所得油包生长激素纳米药物(N/0)混悬液滴加到O.I ml含20% (w/w)银纳米颗粒和2% (w/w)聚乙烯醇(PVA)表面活性剂的水混悬液中并搅拌5分钟形成纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳;
(4)把步骤(3)所得的纳米颗粒混悬液包油一油包生长激素纳米药物(Ν/0/Ν)复乳滴加到1000 ml浓度为5% (w/w)的氯化钠水溶液中固化2小时;
(5)把步骤(4)所得样品进行离心,收集微球,并用水洗涤3次,冻干后得到载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球。本实施例中所得微球中,药物的重量百分比为30%,纳米颗粒的重量百分比为20%,聚合物的重量百分比为20%,药用辅料的重量百分比为30%。本实施例中载有生长激素纳米药物的聚乳酸一羟基乙酸(PLGA)微球形态好,其表面自组装有一层银纳米颗粒,粒径在5 — 475 μ m。微球的药物体外释放率几乎达到100%,突释非常小,几乎完全释放,基本可以达到零级释放,其体外释放性能符合要求。微球中生长激素相对于其原始投加量的包封率为92. 9%(计算方法为实际包封在微球的药/投入的药量X 100%=药物的包封率)。所制备微球的药效较好,在治疗期间,在动物组织内没有出现注射部位的微囊化或纤维化。这种表面具有纳米颗粒的生物大分子药物微球,由于表面亲水性材料的组织相容性比疏水性材料的好,具有增强细胞黏附、减少局部过酸和疏水材料引起的炎症及微囊化的作用。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。
权利要求
1.一种含生长激素纳米药物微球,其特征在于,所述微球的表面自组装有一层纳米颗粒,微球中生长激素的重量百分比为O. 01% - 40%,纳米颗粒的重量百分比为O. 01% - 96%,聚合物的重量百分比为3. 65% - 99. 98%,药用辅料的重量百分比为0% — 30%,微球的粒径为 I — 500 Mm。
2.根据权利要求I所述的含生长激素纳米药物微球,其特征在于,所述的纳米颗粒为有机纳米颗粒或无机纳米颗粒,可选自聚苯乙烯纳米颗粒、交联葡聚糖纳米颗粒、二氧化娃纳米颗粒、二氧化钛纳米颗粒、轻基磷灰石纳米颗粒、四氧化三铁纳米颗粒、三氧化二铁颗粒、金纳米颗粒、三氧化二招纳米颗粒、碳酸韩纳米颗粒、磷酸韩纳米颗粒、碳酸镁纳米颗粒、氢氧化镁纳米颗粒或银纳米颗粒中的一种或几种。
3.根据权利要求I所述的含生长激素纳米药物微球,其特征在于,所述的聚合物选自聚己内酯、聚乳酸、聚乳酸一羟基乙酸、聚乳酸一聚乙二醇、聚羟基乙酸一聚乳酸一聚乙二醇或聚己内酯一聚乙二醇中的一种或几种。
4.根据权利要求I所述的含生长激素纳米药物微球,其特征在于,所述的药用辅料为 注射用药用辅料。
5.根据权利要求I所述的含生长激素纳米药物微球,其特征在于,所述微球的粒径为10 — 100 μιη。
6.—种权利要求I所述的含生长激素纳米药物微球的制备方法,其特征在于,包括以下步骤 (1)将生长激素和药用辅料制备成纳米药物,所述纳米药物中,生长激素的重量百分比为O. 1% - 90%,药用辅料的重量百分比为0% - 20 % ; (2)将步骤(I)制备的纳米药物按照1:1一 1:10的重量比分散在重量百分比浓度为.O.5% - 80%聚合物的有机溶剂混合溶液中,形成均匀的混悬液,即油包纳米药物混悬液; (3)将步骤(2)形成的油包纳米药物混悬液加入到含重量百分比为1%- 80%纳米颗粒的水混悬液或含重量百分比为1% - 80%纳米颗粒和重量百分比为O. 5% - 5%表面活性剂的水混悬液中,进行乳化,形成纳米颗粒混悬液包油一油包纳米药物复乳; (4)将所述纳米颗粒混悬液包油一油包纳米药物复乳转移到含重量百分比为1%— 10%无机盐的水溶液中固化I 一 4小时; (5)将步骤(4)所得样品进行离心,收集微球,并洗涤所得微球,之后冻干,得到表面自组装有纳米颗粒且内部含有生长激素纳米药物的微球。
7.根据权利要求6所述的制备方法,其特征在于,步骤(I)中所述的纳米药物的制备包括以下步骤 将生长激素和药用辅料溶解在水中,然后加入多孔纳米颗粒,搅拌使得生长激素和药用辅料充分吸附在多孔纳米颗粒里,离心去除上清液,再充分洗涤,然后冻干形成纳米药物;或 将生长激素和药用辅料溶解在水中形成药物水溶液,然后将药物水溶液转移到聚乙二醇水溶液中,充分混匀后于冰箱中预冻,之后冻干,再用二氯甲烷溶解聚乙二醇并离心除去聚乙二醇得到纳米药物。
8.根据权利要求6所述的制备方法,其特征在于,步骤(2)中所述的有机溶剂混合溶液中还添加有重量百分比为O. 1% - 20%的聚乙二醇或泊洛沙姆。
9.根据权利要求6所述的制备方法,其特征在于,步骤(2)中所述的聚合物重量百分比浓度为5% - 30%,所述的有机溶剂选自二氯甲烷、乙酸乙酯、乙腈、庚烷、氯仿或丙酮中的一种或几种。
10.根据权利要求6所述的制备方法,其特征在于,步骤(3)中所述的纳米颗粒重量百分比浓度为20% - 70%,所述的表面活性剂选自聚乙烯醇、聚乙二醇、聚乙烯吡咯烷酮、泊洛沙姆、聚山梨醇、乙基纤维素或吐温中的一种或几种。
全文摘要
本发明公开了一种含生长激素纳米药物微球,它包含生长激素、纳米颗粒、聚合物和药用辅料。本发明还提供了微球的制备方法,该方法将生长激素和药用辅料制备成纳米药物,将所述纳米药物加到含有聚合物的有机溶剂混合溶液中进行乳化,然后将油包纳米药物混悬液加到含纳米颗粒或含纳米颗粒和表面活性剂的水混悬液中进行乳化得到纳米颗粒混悬液包油-油包纳米药物复乳,最后将所得复乳固化,离心收集微球。本发明选择了合适的聚合物材料和微球制备方法,制备的微球包封率高,其表面自组装的一层纳米颗粒具有增强细胞黏附作用,以及减少局部过酸和疏水材料引起的炎症及微囊化的作用,本发明方法可以运用到其它药物缓释或控释微球的制备中。
文档编号A61K47/34GK102885782SQ20121036156
公开日2013年1月23日 申请日期2012年9月26日 优先权日2012年9月26日
发明者陈英辉, 袁伟恩, 施晓红 申请人:复旦大学附属金山医院

  • 颈椎修复枕的制作方法【专利摘要】本实用新型公开了一种颈椎修复枕,包括颈枕和侧枕,颈枕内填充有由按摩球和樟木球混合而成的填充物,侧枕内填充有红外线棉,颈枕和侧枕同轴线设置;颈枕外壳由三块相同的颈枕片缝制而成,三块颈枕片以颈枕的轴线为中心均匀环
  • 一种预充式注射器的制造方法【专利摘要】本实用新型公开了一种预充式注射器,由推送装置组件和药水瓶组件组成,其中,药水瓶组件的瓶体设计为筒状或角柱状结构以容纳注射液,其一端设置有鲁尔接头和旋帽,并经封盖实现对注射液的密封,鲁尔接头可以和注射针快
  • 专利名称:成型物及其制备方法技术领域:本发明涉及到含明苦味生理活性成分、又能掩盖或隐藏如口腔中遗留的苦味之类的不愉快感的一种成形物;这种成形物的制作方法和掩盖(改善)生理活性成分的苦味的一种方法。用于药物制剂和药物中的活性成分,有很多口服时
  • 专利名称:一种唐古特白刺总酚提取物及其提取方法和应用的制作方法技术领域:本发明涉及灌木组织提取物及其提取方法和应用,具体涉及一种从唐古特白刺叶和果中提取的总酚提取物及其提取方法和应用。背景技术:唐古特白刺是蔡藜科(Zygophyllacea
  • 专利名称:一种有效治疗失眠的药酒的制作方法技术领域:本发明涉及一种药酒,具体地说是一种有效治疗失眠的药酒。背景技术:随着社会的不断发展,人们工作、生活的压力逐渐增大,出现了大量的失眠人群, 表现为失眠、健忘、头痛等。据陆亚文等的调查研究表明
  • 专利名称:便捷口腔观察镜的制作方法技术领域:本实用新型属于医疗用具技术领域,具体地讲是一种便捷口腔观察镜。背景技术:目前,临床上在给病人进行口腔内检查时,需要借助光线进行操作,这就需要病人头部来回调整、晃动来配合检查,这样操作十分麻烦、费时
  • 专利名称:一种治疗颈椎病的中药组合物及其制备方法技术领域:本发明属于医药领域,具体涉及一种治疗颈椎病的中药组合物。背景技术:颈椎病又称颈椎综合症,是颈椎骨关节炎、增生性颈椎炎、颈神经根综合征、颈椎间盘脱出症的总称,是一种以退行性病理改变为基
  • 专利名称:具有抗肿瘤活性的番荔枝脂肪酸及其脂肪酸甲酯有效部位的制作方法技术领域:本发明涉及一种植物提取物,具体是涉及一种具有抗肿瘤活性的番荔枝脂肪酸有效部位及其在制备抗肿瘤药物中的应用。背景技术:番荔枝内酯是一类从番荔枝科植物中提取分离得到
  • 专利名称:一种高温高压灭菌装置的制作方法技术领域:本实用新型涉及高温灭菌箱领域,具体为一种应用于菌种生产的高温高压灭菌装置。背景技术:食用菌的培育是现代农业中一个重要的分支,其目的是通过人工培育食用菌以满足人们对食用菌的需求。食用菌在培育过
  • 专利名称:一种颈椎治疗外敷用药物的制作方法技术领域:本发明涉及一种颈椎治疗外敷用药物。背景技术:颈椎病是指颈椎间盘退行性变、颈椎肥厚增生以及颈部损伤等引起颈椎骨质增生,或椎间盘脱出、韧带增厚,刺激或压迫颈脊髓、颈部神经、血管而产生一系列症状
  • 专利名称:益寿型阿胶固元膏的制作方法技术领域:本发明涉及一种中药方剂,尤其涉及一种增强免疫能力,增强机体能力的益寿型阿胶固元膏。背景技术:现有技术中有很多种固元膏,众所周知,固元膏的主要原料为阿胶,然后根据加的辅料的不同会产生不同的功效,但
  • 一种口腔种植体的制作方法【专利摘要】本实用新型涉及一种口腔种植体。它由植牙件(1)、固位件(2)和固位套筒(3)组成;植牙件(1)采用多孔钽制件,孔隙率为60%~70%;植牙件(1)内部有上下贯通的通孔(4),通孔(4)侧面有普通螺纹;植牙
  • 专利名称:引导件的制作方法技术领域:本发明涉及一种圆管型装订仪的手术附件,尤其涉及一种圆管型装订仪的引导件。背景技术:圆管型装订仪是一种广泛用于圆管型组织缝切手术的外科器械,由圆形的钉头组件与击发组件组成;将两段需要连接起来的圆管型组织放置
  • 专利名称:药用气雾剂的制作方法技术领域:本发明涉及用于给药,特别是用吸入法使用一种氯地米松酯的新型气雾剂。氯地米松双丙酸酯是9α-氯-16β-甲基-1,4-孕甾二烯-11β,17α,21-三醇-3,20-二酮17α,21-二丙酸酯,并可用式
  • 一种心内科病床的制作方法【专利摘要】本实用新型公开一种心内科病床,包括床头板、床板、气囊垫、弹簧、床脚及踏板,所述床头板固定设置于床板上,所述气囊垫位于床板的上方,所述弹簧设有四个,分别位于床板的四个顶角下,所述床脚位于弹簧的下方,所述踏板
  • 一种中药加工设备的制作方法【专利摘要】本实用新型提供一种中药加工设备,包括煎煮装置和过滤装置,其特征是所述煎煮装置包括煎煮容器,在煎煮容器的底部设有电加热器,在煎煮容器的顶部设有容器盖,在煎煮容器的内壁上设有承挡圈,在煎煮容器里设有网罩,网
  • 专利名称:泊洛沙姆-烟酸前药及其制备方法技术领域:本发明涉及一种泊洛沙姆作为载体的烟酸前药及其合成方法,属于药物合成技术领域。背景技术:随着现代医学的高度发展,大分子药物在医学上的研究和应用日益受到人们的重视。以前的低分子药物虽然疗效高,使
  • 专利名称:一种制备灯盏花乙素的方法技术领域:本发明涉及药物合成领域,特别涉及一种制备灯盏花乙素的方法。 背景技术:灯盏花乙素,又称野黄芩苷,其系统命名为4’,5,6-三羟基黄酮-7 β -0-葡萄糖醛 酸苷,是云南民族药灯盏花及其提取物制剂
  • 专利名称:一种治疗耳聋耳鸣的药物及其制备方法技术领域:本发明涉及一种治疗耳聋耳鸣的外用药,具体涉及以中药为原料制备的耳聋耳鸣中成药。背景技术: 耳聋耳鸣是中老年常见的顽症。中医认为耳鸣多为暴怒、惊恐、胆肝风火上逆,以至阳经气闭阻、外感风邪或
  • 专利名称:一种治疗小儿顽固性咳喘的熨剂药物的制作方法技术领域:本发明涉及一种中药制剂,即治疗小儿顽固性咳喘效果十分理想的一种治疗小儿顽固性咳喘的樊 剂药物。背景技术:咳喘是一种呼吸系统常见疾病。引起的原因很多,除呼吸系统各器官,其它内脏的神
  • 专利名称::含有2-甲基-1,3-丙二醇的透明美容棒剂组合物的制作方法背景技术::本发明涉及透明的美容棒剂(stick)组合物,特别涉及具有改进的透明度和稳定性的除臭棒剂组合物。含有一元醇和或多元醇、皂类胶凝剂以及选择性地含有水以及一种或多